Allsky Camera Network for Detecting Bolides

Tyler Turner Vincent Quintero Jean-Pierre Derbes Charles Derbes Dr. Csaba Palotai

What We are Observing

Fireball

A brilliant meteor that may trail bright sparks

Bolide

A large meteor (Fireball) especially one that explodes

Location of Nodes

Goals

- Build software with practical long term use
- Rework and upgrade the
 software so future devs can get
 moving faster
- Add documentation
- Improve UX for researchers trying to do the hard stuff

Motivation

- Current system is unstable, crashing sporadically
- UI lacks polish and is cumbersome to use
- Code is large, undocumented, and difficult to learn
- Researchers struggle to get new helpful features

Approach

Onboarding

- Improve onboarding process to minimize the risk of critical errors
- Previously a single mistake could lead to the box being sent back to the research team

Monitoring

Centralized monitoring system allowing researchers to easily track down and configure boxes remotely.

Architecture

- Modification of the architecture to meet our requirements
- Complete rewrite of the codebase with an emphasis on simplicity, expansion, and modularity.

Novel features/functionalities

- 1. IoT style setup
- 2. Improved Box Operation
 - 3. Centralized UI
- 4. Classification

IoT Style Connectivity This would simplify the setup process and give users more room to make mistakes

9:3	39 ? 80
<	
Conne	ct to Your Wemo's Wi-Fi
1.	Go to your phone's settings.
?	From there, open Wi-Fi settings and connect to your Wemo's Wi-Fi. It will look something like this: Wemo.XXX
we 3.	Once you're connected, come back to the Wemo App.

Improved Node Operation

 Nodes will collect data and operate offline until connection is restored

Nodes will be able to quickly notify owners of critical issues as they occur

• Nodes will be able to download updates remotely

Centralized UI

- Goal is to have a central server that would:
 - Hosts a frontend that controls and views nodes' data
 - Process video data from nodes (reduce workload of Raspberry Pi)

Current UI

UI is running on the local hardware of each node

Mocked UI

Central UI where user can view all nodes from one place

			٠								
ŧ	‡ Devices Casino Al										
	Devices			Sort by Na	me Sort by Status						
	•	•	•	•	•						
	Ċ	Ċ	Ċ	Ċ	Ċ						
	Apple 192.168.1.100	Banana 192.168.1.101	Blueberry 192.168.1.107	Grape 192.168.1.104	Kiwi 192.168.1.106						
	•	•	•	•							
	Ċ	Ċ	Ċ	Ċ							
	Mango 192.168.1.105	Orange 192.168.1.102	Pear 192.168.1.103	Strawberry 192.168.1.1							

. •

Mocked UI

Central UI where user can view all nodes from one place

Camera Controls		Camera Preview	u .
Resolution	~		
Frame Rate	~		
Exposure	~		
Color	~		
		Current Configur	ation
		Resolution 1080p	Frame Rate 30 FPS
		Exposure	ISO
		50	400
		5600K	50%
		Contrast	
		50%	

Classification

- Currently users must manually sort through events to determine which ones are interesting
- Classification will be used to do this process automatically for the user
- This will require a much larger data set than what we currently have
- Once the data set is augmented we will be training a convolutional neural network to classify the events

Algorithms and Tools

Python (Hardware IO) OpenCV (Capture/Process video on Pi) Golang (Backend) FastAPI (Create API for uploading files to server) PyTorch (Classification Model for detecting bolides) Ansible (Declarative configuration) Redis (Fast database) SQLite (Light database) Tailscale (Networking) Netdata (Monitoring) Tailwind (GUI Styling) Htmx/React/Vue/Flutter (GUI Rendering) GitHub Actions (CI/CD) SwaggerDocs (Documentation) Pytest (Unit tests) Image Processing Algos

Technical Challenges

Codebase has to be rewritten

- Code is currently conglomerated into huge files
- The system is unnecessarily complex and needs to be "untangled" before we proceed
- Program is littered with peculiar implementation choices

Classification

- Dataset needs to be augmented and labeled
- Must be careful not to filter out interesting events

Algorithms and Tools

- Lots of tools means gluing lots of different technologies together

IoT Style Setup

 Might be harder than it seems due to edge cases such as user losing connection to box during setup

Milestone One

- Stabilize system to facilitate testing, data collection, and collecting metrics on the performance of the current infrastructure, whilst the rewrite is occurring.
- Create system architecture diagram
- Storyboard the frontend
- API design
- Design CLI for image processing pipeline

Milestone Two

- Implement API
- Implement CLI
- Show that event can be detected and sent to server

Milestone Three

- Classification
- Frontend MVP

Task Matrix (Milestone 1)

Task	Tyler	Vincent	Jean-Pierre	Charles
Diagnose current issues •	Fix stop camera error	Frontend	Fix state (consolidate into single source of truth)	Fix unknown camera control errors (particularly when changing exposure modes)
Create system architecture diagram	All contribute	All contribute	All contribute	All contribute
Storyboard the frontend	Brainstorm	Create	Brainstorm	Brainstorm
API design	All contribute	All contribute	All contribute	All contribute
Design CLI for image processing pipeline	Create	Brainstorm	Brainstorm	Brainstorm

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Thanks!