
Allsky Camera Network 
for Detecting Bolides

Tyler Turner
Vincent Quintero

Jean-Pierre Derbes
Charles Derbes

Dr. Csaba Palotai



Task Matrix (Milestone 3)

Task Completion Tyler Vincent Jean-Pierre Charles

Replace current C++ camera code 100% 10% 35% 45% 10%

Implement Server API 99% 50% 0% 50% 0%

Implement Client API 99% 20% 0% 20% 60%

Begin writing CLI 30% 30% 10% 50% 10%

IoT Style Setup 99% 20% 0% 10% 70%

Classification 99% 0% 33% 33% 34%

Start Writing UI 0% 20% 70% 0% 10%

Create setup process for node 75% 75% 0% 25% 0%



Task Discussion

Replace Current C++ Camera Code -> Node records and sends videos in 10 minute chunks

Implement Server API -> Consumer queue that workers pull from to process video

Implement Client API -> Configuration moved to .env, made gps integration easier

Begin writing CLI -> Classification pipeline written

IoT Style Setup -> Still need to add captive portal

Classification -> Complete, may need to look into a transformer for even better accuracy. Still needs to be 
tested “in the wild”.

Start Writing UI -> No physical work was done on this, only “work” done was throwing ideas around

Create Setup Process for Node -> Ansible playbook that dictates all of the software and configuration a 
node needs to operate



The life of a video



Classification Pipeline

https://www.google.com/url?q=https://docs.google.com/file/d/11TF5uvVbxtkjmcLE4IO2gmU6Y0Vz9tuH/preview&sa=D&source=editors&ust=1734719311227304&usg=AOvVaw3FcLH_-zYp5LHsvZbP1UI-


Classification Pipeline

Composite Object proposer
Molding to 512x512



Bolide Classification Model

● Dataset size: 4000
● 70-15-15 train, validation, test split
● Label encodings: {'bolides': 0, 'notbolides': 1}
● 4000 samples, 2000 of them are notbolide, and 2000 of them are bolide
● Hyperparams: 

○ lr = 0.001
○ epochs = 20
○ loss = BCELoss (Binary Cross Entropy Loss)
○ Adam optimizer

● Inputs are transformed to 128x128, making training much faster





 Contribution of Each Member

Tyler Turner
● Looked into captive portal for IoT
● Worked heavily on both APIs and implemented video sending
● Node setup (Ansible playbook)

Vincent Quintero
● Implemented video composites 
● Implemented data augmentation for training model



 Contribution of Each Member

Jean-Pierre Derbes
● Trained and tuned classification model
● Implemented classification pipeline

Charles Derbes
● Designed classification pipeline
● Implemented object proposer and molder 



Task Matrix (Milestone 4)
Task Tyler Vincent Jean-Pierre Charles

Implement UI 10% 50% 0% 40%

Polish Server 50% 20% 30% 0%

Polish Client 30% 20% 20% 30%

UI Tests 0% 0% 50% 50%

Server Tests 50% 0% 50% 0%

Client Tests 0% 0% 50% 50%

Create setup process 
for Node

75% 0% 25% 0%



Task Discussion

- Implement UI -> Implement a UI and use researcher feedback to enhance 
UX.

- Polish Server -> Bugs and performance issues.

- Polish Client -> Video sending needs more testing since it is a core 
functionality.

- UI Tests -> End-to-end tests using Playwright.

- Server Tests -> Unit tests for each part.

- Create Setup Process for Node -> Hardware testing suite.



Thanks!


